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Introduction
Fuzzy data in action

It is widely recognized that statistical analyses benefit from using fuzzy numbers
to handle real situations involving post-sampling or epistemic uncertainty.

This is quite evident in social science research, which frequently suffers from
imprecise measurement [Cao et al., 2024].

Yet fuzzy data also arise in the life sciences, for instance in RNA-seq analyses
where the read-to-gene alignment problem produces multireads (fuzzy counts)
[Consiglio et al., 2016, Mencar and Pedrycz, 2020].
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Introduction
Modeling fuzzy data

Our problem can be well-settled within the Tanaka-Okuda approach to fuzzy
data analysis [Tanaka et al., 1977, Gebhardt et al., 1998].
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Introduction
Modeling fuzzy data

Let X : (Ω,A,P) → (S ,S) be a A-S-measurable function. The induced distri-
bution PX on (S ,S) is assumed to belong to a parametric family {Pθ : θ ∈ Θ}.

The sample X1, . . . ,Xn is assumed to be blurred into the fuzzy sample

x̃ = (x̃1, . . . , x̃n),

with x̃i being a fuzzy subset of S characterized by a Borel-measurable membership
function ξx̃i : S → [0, 1]. Here, S̃ is a fuzzy cover of S or a fuzzy information
system in Tanaka’s sense.

The statistical problem here is to identify θ̂ ∈ Θ such that Pθ̂ describes the
distribution of x based on x̃. This is a type of filtering or de-blurring problem.
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Fuzziness as coarsening
Is fuzziness a form of coarsening?

It has been argued that fuzziness can be interpreted as a form of coarsening, such
as grouping [Gebhardt et al., 1998] or interval censoring [Nguyen and Wu, 2006,

Denœux, 2011].

Moreover, a likelihood-based interpretation of fuzzy data has been proposed as
a generalization of the assumption that data are coarsened at random (CAR)
[Cattaneo, 2017].

2GMc−2 | Calcagǹı & Grzegorzewski Fuzziness as coarsening 3 / 9



Fuzziness as coarsening
Is fuzziness a form of coarsening?

It has been argued that fuzziness can be interpreted as a form of coarsening, such
as grouping [Gebhardt et al., 1998] or interval censoring [Nguyen and Wu, 2006,

Denœux, 2011].

Moreover, a likelihood-based interpretation of fuzzy data has been proposed as
a generalization of the assumption that data are coarsened at random (CAR)
[Cattaneo, 2017].

Note that CAR implies ignorability: the mechanism generating fuzziness can be
ignored. However, under the Tanaka-Okuda conditions, we argue that fuzziness
is not ignorable.
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

Consider a non-empty finite set S and a collection S∗ ⊆ P(S) \ {∅}.
A coarsening mechanism is a mapping ϕ : S → S∗ such that for any realization
x ∈ S of X , we have x ∈ ϕ(x).

Here, rather than measuring x , the observers measures a coarsened version of it,
the set A ∈ S∗ containing x .

The coarsening mechanism is characterized by the conditional probability of ob-
serving A given x , namely P[ϕ(x) = A|X = x ].
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

In general, ϕ models a CAR mechanism iff:

(1) P[ϕ(x) = A | X = x ] = P[ϕ(x) = A | X = x ′], ∀x , x ′ ∈ A (CAR condition)

(2)
∑
A∈S∗

P[ϕ(x) = A | X = x ] = 1, ∀x ∈ S (Normalization)
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

S∗ supports a CAR mechanism if the system

Mz = 1n,

has a unique non-negative solution, with M being the incidence matrix associated
with S∗. This provides an operative test for the CAR assumption.

In this case,

P̂[ϕ(x) = Aj |X ∈ Aj ] = ẑj , where j ∈ {1, . . . , |S∗|}.
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

Now, if S̃∗ constitutes a collection of fuzzy subsets of S (i.e., a fuzzy cover or
partition), as in the Tanaka–Okuda condition, then ϕ is no longer CAR.
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

Now, if S̃∗ constitutes a collection of fuzzy subsets of S (i.e., a fuzzy cover or
partition), as in the Tanaka–Okuda condition, then ϕ is no longer CAR.

Intuitively, since ξÃ(x) varies over x ∈ Ã, realizations are no longer exchange-
able within A, unlike in the crisp case.
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 1 [Gill and Grünwald, 2008]

Let M̃ = (ξÃj
(xi ))ij denote the fuzzy incidence matrix. Then, the solutions to

the associated linear system no longer satisfy x-independence (condition 1); that
is,

P̂[ϕ(x) = Ãj | X ∈ Ãj ] ̸= P̂[ϕ(x) = Ãj | X = x ] = ξÃj
(x)ẑj ,

where j ∈ {1, . . . , |S∗|}.

Indeed,
ξÃj

(x)ẑj ̸= ξÃj
(x ′)ẑj ,

unless, in the trivial case, M̃ = 1c for some c ∈ [0, 1]. However, the system
becomes non-identifiable in this case.
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Fuzziness as coarsening
No ignorability for fuzziness

Argument 2 [Kaymak et al., 2003]

Consider a probabilistic fuzzy system with crisp antecedents S (equipped with a
probability distribution Pθ) and fuzzy consequents S̃∗.

The input-output connecting rule ϕ is evaluated via the conditional probability
of Ãj ∈ S̃∗ given x ∈ S , i.e.

P[ϕ(x) = Ãj |X = x ] = P[Ãj ∩ {x}] (Pθ[X = x ])−1

= ξÃj
(x).

Still, unless ξÃj
(x) is constant over x ∈ Ãj , the coarsening probability depends

on the latent realization x .
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Fuzziness as coarsening
Fuzziness requires CNAR

Arguments 1 and 2 point to a coarsening mechanism that cannot be ignored
(CNAR: Coarsening Not At Random).
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Fuzziness as coarsening
Fuzziness requires CNAR

Arguments 1 and 2 point to a coarsening mechanism that cannot be ignored
(CNAR: Coarsening Not At Random).

As in MNAR problems [Molenberghs and Verbeke, 2005], a similar factorization
arises in this context:

Pθ(x, x̃ | . . .) = Pθ(x̃ | x, . . .)︸ ︷︷ ︸
coarsening
mechanism

Pθ(x | . . .)︸ ︷︷ ︸
measurement
distribution

.

2GMc−2 | Calcagǹı & Grzegorzewski Fuzziness as coarsening 6 / 9



Fuzziness as coarsening
Fuzziness requires CNAR

Arguments 1 and 2 point to a coarsening mechanism that cannot be ignored
(CNAR: Coarsening Not At Random).

As in MNAR problems [Molenberghs and Verbeke, 2005], a similar factorization
arises in this context:

Pθ(x, x̃ | . . .) = Pθ(x̃ | x, . . .)︸ ︷︷ ︸
coarsening
mechanism

Pθ(x | . . .)︸ ︷︷ ︸
measurement
distribution

.

▶ To specify the coarsening mechanism, we propose using a parametric hierar-
chical model.
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

To fix ideas, consider a collection of bounded Beta-type fuzzy numbers

X̃ = ((m1, s1), . . . , (mn, sn)) ,

parametrized using mode m ∈ R and precision s ∈ R+.
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

Under the CNAR assumption, the fuzziness mechanism can be specified as follows
[Calcagǹı et al., 2025]:

f ({m, s} | x,θ) = f (m, | s, x,θ)f (s | x,θ)f (x | θ)
= f (m, | s, x) f (s | θs)f (x | θx)︸ ︷︷ ︸

Si |= Xi

,

where

Sup(Xi ) ⊆ Sup(Mi ),

E [Mi ] = E [Xi ],

Var [Mi ] = g(Var [Xi ] ,E [Xi ] , c), where c > 0.
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

A particular instance of hierarchical model is the following

xi ∼ fX (x ;θx),

si ∼ G(s;αs , βs),

mi |si , xi ∼ Be4P(m; sixi , si − sixi , lb, ub),

where fX (x ;θx) is the measurement model with g(E [Xi ]) = ziβ to account for
external covariates.
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

To check the effects of coarsening mispecification, consider a simple application
of the hierarchical model on a n = 318 sample of Beta-type fuzzy numbers
([Calcagǹı et al., 2025], Section 6.4).

2GMc−2 | Calcagǹı & Grzegorzewski A hierarchical model for fuzziness 8 / 9



A hierarchical model for fuzziness
An application with Beta fuzzy numbers

▷ Models specification:

CNAR CAR

fXi
(x ;θ) = Be(0,1)(x ;µϕ, ϕ− ϕµ) –

mi |si , xi ∼ Be4P(m; sixi , si − sixi , 0, 1) mi |si ∼ Be4P(m; siµ, si − siµ, 0, 1)

where θ = {ϕ, µ} ∈ R+ × (0, 1) in both cases.
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

▷ Parameter estimation:

MCMC with 4× 4e3 samples (burn-in: 1e3 samples)

▷ Model performance:

Posterior Predictive Checks [Gelman et al., 2008]:

π(m̂, ŝ | ..,θ) vs. {m, s}

π(sup(ˆ̃x), | ..,θ) vs. sup(x̃)

π(kaufman(ˆ̃x), | ..,θ) vs. kaufman(x̃)

Measures:

coverage (the higher, the better)

transformed Bayesian p-value (the lower, the better)
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A hierarchical model for fuzziness
An application with Beta fuzzy numbers

▷ Results:
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Conclusions

▶ Fuzziness can be seen as a form of coarsening, but standard CAR assumptions
imply x-independent coarsening probabilities

▶ In the fuzzy case, membership functions ξÃ introduce x-dependence into the
coarsening probabilities, violating CAR

▶ This implies that fuzziness needs to be treated as CNAR

▶ Hierarchical models can then be used to explicitly specify the CNAR mechanism
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